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ABSTRACT

This study compares the simulation biases of Advanced Himawari Imager (AHI) brightness temperature

to observations made at night over China through the use of three land surface emissivity (LSE) datasets.

The University of Wisconsin–Madison High Spectral Resolution Emissivity dataset, the Combined

Advanced Spaceborne Thermal Emission and Reflection Radiometer andModerate Resolution Imaging

Spectroradiometer Emissivity database over Land High Spectral Resolution Emissivity dataset, and the

International Geosphere–Biosphere Programme (IGBP) infrared LSE module, as well as land skin tem-

perature observations from the National Basic Meteorological Observing stations in China are used as inputs

to the Community Radiative Transfer Model. The results suggest that the standard deviations of AHI ob-

servations minus background simulations (OMBs) are largely consistent for the three LSE datasets. Also,

negative biases of the OMBs of brightness temperature uniformly occur for each of the three datasets. There

are no significant differences in OMB biases estimated with the three LSE datasets over cropland and forest

surface types for all five AHI surface-sensitive channels. Over the grassland surface type, significant differ-

ences (;0.8 K) are found at the 10.4-, 11.2-, and 12.4-mm channels if using the IGBP dataset. Over non-

vegetated surface types (e.g., sandy land, gobi, and bare rock), the lack of a monthly variation in IGBP LSE

introduces large negative biases for the 3.9- and 8.6-mm channels, which are greater than those from the two

other LSE datasets. Thus, improvements in simulating AHI infrared surface-sensitive channels can be made

when using spatially and temporally varying LSE estimates.

1. Introduction

The infrared imagers on board geostationary satellites

provide rich information about the atmosphere and

surface through their high temporal and spatial sam-

pling. In particular, infrared measurements are very

much needed for nowcasting fast-evolving convective

weather systems (Walker et al. 2012; Zhuge and Zou

2018) and for predicting precipitation through radiance

assimilation (Zou et al. 2011, 2015; Qin et al. 2017). The

infrared radiance at a wavelength l under clear-sky

conditions Ll can be simulated based on the following

emission-based radiative transfer equation (Chen 2005):
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where «ls is the surface emissivity, Ts is the surface skin

temperature, Bl(T) is the Planck function as a function

of l and temperature T, and tl(P) is the transmittance

from a pressure layer P to space. Transmittance always

has a value because of the existence of water vapor and

other absorbers in the atmosphere. Under clear-sky

conditions, the bias of simulated infrared radiances to

observations is mostly affected by atmospheric tem-

perature and absorber profiles. For infrared surface-

sensitive channels where the weighting function

[›tl(P)/›P] is the largest at the surface, the accuracy of

radiance simulations is strongly dependent on «ls andTs.

As pointed out by Li et al. (2010), a standard deviation

error of 0.025 in the surface emissivity at 10.8 mm would

lead to an error of ;1.14 K in the simulated brightness

temperature at this wavelength.

Although significant progress has been made in in-

frared radiance data assimilation, surface-sensitive in-

frared radiance observations over land are currently

excluded from data assimilation systems mainly because

of the large uncertainties in land surface emissivity

(LSE) input into a fast radiative transfer model. Al-

though the land skin temperature (LST) also has large

uncertainties over areas with complicated land surface

characteristics (Zheng et al. 2012; Trigo et al. 2015; Zhuo

et al. 2016), it is not strictly required, since it is often

adjusted in the data assimilation process based on the

land–atmospheric interaction and radiative balance. To

better utilize surface-sensitive infrared radiance data in

data assimilation systems over land, highly accurate LSE

datasets (e.g., better than 0.08 accuracy) are required.

The Community Radiative Transfer Model (CRTM)

is a fast radiative transfer model that is widely used in

satellite data assimilation (Han et al. 2007; Weng 2007).

Compared to a line-by-line radiative transfer model, the

CRTM has a precision better than 0.03 and 0.1 K in the

infrared and microwave spectral regions, respectively

(Chen et al. 2010). In the current version of the

CRTM—that is, CRTM, version 2.2.3 (CRTMv2.2.3)—

three infrared LSE modules are used for generating the

surface emissivity over land, namely, modules involving

LSE datasets from the National Polar-Orbiting Opera-

tional Environmental Satellite System, the U.S.

Geological Survey, and the International Geosphere–

Biosphere Programme (IGBP). Each of these LSE

modules consists of a lookup table (LUT) for reflectance

as a function of wavenumber and surface type. The

surface emissivity is calculated as one minus the re-

flectance under the assumption of a Lambertian surface

(Salisbury et al. 1994). Hence, the accuracy of the LSE

module is affected by both the LUTs and the surface

type dataset. Vogel et al. (2010) and Zhuge et al. (2017a)

have demonstrated that the IGBP module provides a

realistic estimate of LSE. However, Zou et al. (2016)

showed that CRTM simulations over land deviated

greatly from observations made by the Advanced

Himawari Imager (AHI) on board the Japanese

Himawari-8 satellite, even if the LSE from the IGBP

infrared LSE module (IGBP LSE dataset) was used.

Fortunately, the current version of the CRTM accepts

a user-defined LSE. In other words, users can dynami-

cally input an external LSE dataset into the CRTM

for each observation.

Most of the infrared LSE datasets are retrieved from

instruments on board polar-orbiting satellites, such

as theVisible Infrared ImagingRadiometer Suite onboard

the Suomi National Polar-orbiting Partnership satellite,

the Moderate Resolution Imaging Spectroradiometer

(MODIS) on board the Aqua and Terra satellites, and

the Advanced Spaceborne Thermal Emission and Re-

flection Radiometer (ASTER) on board the Terra

satellite. Among the different global infrared LSE da-

tasets, the University of Wisconsin–Madison (UW) High

Spectral Resolution Emissivity dataset (UW_HSRemis)

and the Combined ASTER and MODIS Emissivity

over Land (CAMEL) High Spectral Resolution Emis-

sivity dataset (CAMEL_HSRemis) have the best accu-

racy (Seemann et al. 2008; Borbas et al. 2017).

Through comparisons with AHI observations at the

five AHI surface-sensitive channels, we assess the im-

pacts of the IGBP LSE dataset, UW_HSRemis, and

CAMEL_HSRemis on CRTM simulations over differ-

ent surface types. This paper is organized as follows:

Section 2 provides a brief description of the LSE data-

sets, AHI observations, and model simulations. A

comparison among the three infrared LSE datasets is

made in section 3. The uncertainties of model-

forecasted LST are discussed in section 4. Impacts of

infrared LSEmodels on the simulations of AHI surface-

sensitive channels are presented in section 5. Summary

and conclusions are provided in section 6.

2. Data description

a. High-spectral-resolution LSE

The UW developed a global infrared LSE dataset

called the UW Baseline-Fit (UWBF) emissivity dataset

(Seemann et al. 2008). The UWBF emissivity dataset is

derived from MODIS Land Surface Temperature and

Emissivity (MOD11) products. It provides monthly

mean global emissivities at 10 wavelengths (3.6, 4.3,

1284 JOURNAL OF ATMOSPHER IC AND OCEAN IC TECHNOLOGY VOLUME 35

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/30/24 04:02 PM UTC



5.0, 5.8, 7.6, 8.3, 9.3, 10.8, 12.1, and 14.3 mm) and at a

latitude 3 longitude spatial resolution of 0.058 3 0.058
from 2003 to 2015. Because MODIS has only three

thermal-infrared bands in the 8–12-mm spectral region

(8.55, 11, and 12 mm), the emissivity in this spectral re-

gion undergoes a form of extrapolation and is thus not

well defined in the two quartz doublet regions at 8.5 and

12 mm (Borbas et al. 2017).

The Jet Propulsion Laboratory recently released the

fourth version (v4) of the ASTER Global Emissivity

Dataset (Hulley et al. 2015). The ASTER Global

Emissivity Dataset, v4 provides monthly mean emis-

sivities at only five thermal-infrared wavelengths (8.3,

8.6, 9.1, 10.6, and 11.3 mm) at a latitude 3 longitude

spatial resolution of 0.058 3 0.058 from 2000 to 2015.

A CAMEL emissivity dataset was produced by merg-

ing the UWBF Emissivity Dataset with the ASTER

Global Emissivity Dataset v4 to capitalize on the unique

strengths of each product’s characteristics (Borbas et al.

2017). The CAMEL emissivity dataset provides monthly

emissivities from 2003 to 2015 at a latitude 3 longitude

spatial resolution of 0.058 3 0.058 for 13 bands within the

spectral region of 3.6–14.3 mm (3.6, 4.3, 5, 5.8, 7.6, 8.3,

8.6, 9.1, 10.6, 10.8, 11.3, 12.1, and 14.3 mm).

Both theUWBF andCAMELemissivity datasets were

extended to a high spectral resolution using a princi-

pal component regression approach and laboratory-

measured emissivity spectra–derived eigenvectors

(Borbas et al. 2007; Borbas and Ruston 2010). The

UW_HSRemis is generated at 416 wavenumber points

within the spectral range from 699.3 to 2774.3 cm21 at a

5 cm21 spectral resolution, while the CAMEL_HSRemis

is generated at 417 wavenumber points within the

spectral range from 694 to 2778 cm21 at a 5 cm21 spec-

tral resolution. In this study UW_HSRemis and

CAMEL_HSRemis in 2015 were used to simulate the

brightness temperatures of AHI surface-sensitive

channels. A convolution with the spectral response

function of AHI was used to obtain emissivities at the

five surface-sensitive AHI channels from UW_HSRemis

and CAMEL_HSRemis.

b. AHI observations and simulations

The AHI/Himawari-8 satellite is positioned in a geo-

stationary orbit at an altitude of 35 800 km above the

equator at 140.78E (Bessho et al. 2016). It provides a full

disk scan of the EasternHemisphere every 10min with a

subpoint resolution of 2 km. The AHI has 10 infrared

channels, including a stratospheric ozone channel with

its wavelength centered at 9.6 mm (channel 12); three

water vapor channels centered at 6.2, 6.9, and 7.3 mm

(channels 8–10, respectively); a CO2 channel at 13.3 mm

(channel 16); and five surface-sensitive channels with

their central wavelengths located at 3.9, 8.6, 10.4, 11.2,

and 12.4 mm (channels 7, 11, and 13–15), respectively.

The biases for AHI infrared channels with respect to

Cross-Track Infrared Sounder (CrIS) observations ob-

tained by Takahashi (2016) are provided in Table 1. The

AHI to CrIS biases at 290 K are;0.23 K for the 8.6-mm

channel and less than 0.10 K for the other four surface-

sensitive channels (Takahashi 2016), suggesting a high

radiometric calibration accuracy of the AHI instrument.

Table 1 also provides the biases for AHI infrared

channels with respect to model simulations using

CRTMv2.2.3 with the European Centre for Medium-

Range Weather Forecasts (ECMWF) analyses under

clear-sky conditions over oceans. The biases for the five

AHI surface-sensitive channels are 0.28, 20.45, 20.30,

20.26, and 20.56 K, respectively (Zou et al. 2016).

In this study the AHI radiance simulations are also

calculated using CRTMv2.2.3. The LST measurements

serving as inputs to the CRTM are collected hourly

TABLE 1. Central wavelengths, pressures of the peak weighting function (WF), and the biases of AHI infrared channels 7–16 under

clear-sky conditions over oceans with respect to model simulations and CrIS observations. The model simulations of brightness tem-

perature are obtained from ECMWF analyses using CRTMv2.2.3.

Channel No. Central wavelength (mm) WF peak (hPa)

Bias (K) w.r.t.

Simulations CrIS data

7 3.9 Surface 0.28 20.059 at 290 K

8 6.2 350 20.17 20.150 at 220 K

9 6.9 450 0.44 20.212 at 250 K

10 7.3 600 20.34 20.230 at 250 K

11 8.6 Surface 20.45 0.231 at 290 K

12 9.6 40 20.01 20.117 at 250 K

13 10.4 Surface 20.30 0.004 at 290 K

14 11.2 20.26 0.015 at 290 K

15 12.4 20.56 20.095 at 290 K

16 13.3 990 20.52 20.007 at 290 K
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at 2423 National Basic Meteorological Observing

(NBMO) stations in China. These NBMO stations are

densely distributed in eastern China but sparsely in

western China (Fig. 1). There is a strict requirement on

the local environment and the observing instruments at

these stations. Measurements provided by the NBMO

stations in China are thus credible. A spatial consistency

test is done to ensure that an LST measurement from a

certain station was close to the mean value of its

neighboring stations within a 28 3 28 area. Specifically, a
gross quality control was applied to remove those LST

data that deviated from the mean value by less

than210 K or greater than 20 K. The vertical profiles of

atmospheric temperature, water vapor, and ozone

serving as inputs to the CRTM are obtained from the

National Centers for Environmental Prediction (NCEP)

Global Forecast System (GFS) analyses that are avail-

able at 6-h intervals. NCEP GFS data are global and

have a 0.258 3 0.258 horizontal resolution and 31 vertical

levels from the earth’s surface to about 1 hPa. In this

study we use data observed at 0300, 0900, 1500, and

2100 UTC on 144 days, that is, the 2nd, 7th, 12th, 17th,

22nd, and 27th of each month in the 2-yr period from

July 2015 to June 2017. The NCEP GFS grid was in-

terpolated to the NBMO stations using a bilinear

interpolation method.

This study focuses on model simulations of AHI

surface-sensitive channels under clear-sky conditions.

Clear AHI pixels are identified based on the AHI cloud

mask that is created using an infrared-only cloud mask

algorithm during nighttime (Zhuge and Zou 2016) and a

visible-based fast cloud mask algorithm during daytime

(Zhuge et al. 2017b). A ‘‘probability of correct typing’’

of 91.94% and 92.59% is achieved over land during

daytime and nighttime, respectively, when compared to

the MODIS cloud mask product (MYD35). Data with

satellite zenith angles greater than 758 are also excluded.

c. Topography and land-cover datasets

The topography database with a 1-arc-min resolution

is provided by the National Centers for Environmental

Information, National Oceanic and Atmospheric Ad-

ministration (via http://www.ngdc.noaa.gov/mgg/global/

global.html). Figure 2a shows the spatial distribution of

terrain heights over China. In general, the terrain height

is high in western China and low in eastern China. The

Tibetan Plateau, where the elevation is greater than

3000 m, is located in southwestern China. Surrounding

the Tibetan Plateau are four great basins, namely, the

FIG. 1. Spatial distribution of the NBMO stations of China. The

satellite zenith angle is 758 at the location marked (solid gray line).

FIG. 2. Spatial distributions of (a) terrain height (m) and (b) surface type. The locations of the four basins sur-

rounding the Tibetan Plateau are shown.
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Junggar, Tarim, Qaidam, and Sichuan basins. Eastern

China is largely a plain with elevations lower than

1000 m.

The Multisource Integrated Chinese Land Cover

Dataset, which was produced by the Chinese Academy

of Sciences, combines the results from Landsat obser-

vations and intensive field surveys (Ran et al. 2010). The

overall accuracy of the land-cover map was estimated

to be 95%, which is the highest accuracy among all

national-scale land-cover data products over China

(Ran et al. 2012). In this dataset the nonvegetated sur-

face is further divided into the following categories:

sandy land, gobi, salina, bare soil, and bare rock. As seen

fromFig. 2b, sandy lands are bordered bymountains and

FIG. 3. (top) Spatial distributions of LSE from the IGBP dataset, (middle) UW_HSRemis in June, and (bottom)

CAMEL_HSRemis in June for the (left) 3.9- and (right) 8.6-mm AHI channels.
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connected through the gobi and bare rock. Except for

the sandy land in Inner Mongolia (;1058E, 408N), all

other sandy lands are located in the great basins.

3. Comparison of the three infrared LSE datasets

Figure 3 displays the spatial distributions of LSE from

the IGBP dataset, which is independent of the month,

and UW_HSRemis and CAMEL_HSRemis for the

month of June at 3.9 and 8.6 mm. The LSE distributions

from UW_HSRemis and CAMEL_HSRemis are simi-

lar. However, the IGBP LSE distribution is significantly

different from the distributions of the other two LSE

datasets. Over the nonvegetated area in northwestern

China, the IGBP-derived LSE at 8.6 mm is higher than

0.95, but it goes as low as 0.88 for the UW_HSRemis-

and CAMEL_HSRemis-derived LSEs. In eastern

China, the LSE at 3.9mm from the IGBP dataset is lower

FIG. 4. Mean values of LSE averaged over (a) all surface types, (b) cropland, (c) forest, (d) grassland, (e) water body, (f) urban, (g) sandy

land, (h) gobi, (i) salina, (j) bare soil, and (k) bare rock from different LSE datasets.
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than that from UW_HSRemis and CAMEL_HSRemis,

while the LSE at 8.6mm from the IGBP dataset is higher

than that from the two other datasets. Because of the

limitation of the LUT approach, the IGBP LSE dataset

does not capture spatial variations in a single surface

type, while UW_HSRemis and CAMEL_HSRemis do.

Figure 4 presents the mean values of LSE from

the IGBP dataset, as well as UW_HSRemis and

CAMEL_HSRemis in June and December averaged

over different surface types at the wavelengths of

the five AHI surface-sensitive channels. For urban

(Fig. 4f) and most nonvegetated surface types, including

sandy land, gobi, salina, and bare soil (Figs. 4g–j), the

IGBP LSE is consistently higher than the LSEs of

UW_HSRemis and CAMEL_HSRemis within the en-

tire infrared spectral range of 3.9–12.4 mm. For all veg-

etated surface types (Figs. 4b–d), and water body

(Fig. 4e) and bare rock (Fig. 4k) surface types, the LSE

values from the IGBP dataset are higher at 8.6 mm and

lower at 3.9 mm. Within the 10.4–12.4-mm wavelength

range, the three datasets are the most consistent for

all surface types. The difference in LSE between

UW_HSRemis and CAMEL_HSRemis is less than 0.02.

Specifically, UW_HSRemis LSE values at 3.9 and 8.6mm

are slightly larger than those of CAMEL_HSRemis, while

the LSE values at 10.4–12.4 mm from UW_HSRemis are

slightly smaller than those of CAMEL_HSRemis. The

differencesbetweenUW_HSRemis andCAMEL_HSRemis

in June are larger than those in December. For each

UW_HSRemis and CAMEL_HSRemis dataset, differ-

ences in LSE between June and December are small

except for the LSE at 3.9 mm.

The largest differences among the three LSE datasets

occur over nonvegetated surface types at 3.9 and 8.6mm.

Since the IGBP dataset does not differentiate the sub-

sets of nonvegetated surface types—that is, sandy land,

gobi, salina, bare soil, and bare rock—all of these sur-

face types have the same IGBP-based LSE values of

FIG. 5. (left) Spatial distributions of data counts and (right) mean differences in LST between ground-based

observations and NCEP GFS analyses (K) averaged within 28 3 28 grid boxes during (a),(b) daytime and

(c),(d) nighttime.
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;0.88 at 3.9 mm and ;0.96 at 8.6 mm. However, both

UW_HSRemis and CAMEL_HSRemis show that the

LSE over sandy land and bare soil is about 0.05 lower

than that over other nonvegetated surface types at 3.9mm.

The 3.9-mm LSE is about 0.78 in December and 0.84 in

June for sandy land and bare soil. The LSE at 8.6mm

is less than 0.90 over all nonvegetated surface types ex-

cept salina for UW_HSRemis and CAMEL_HSRemis.

In addition, the 8.6-mm LSE from UW_HSRemis is

higher than that from CAMEL_HSRemis over all

nonvegetated surface types, which is consistent with the

validations made by Borbas et al. (2017).

4. LST uncertainties in model forecasts

For most numerical weather prediction (NWP)

models, the LST is not a prognostic variable that is ex-

plicitly predicted on model grid points, but it is derived

from the following radiative balance equation (Zeng

et al. 2012):

R
net

5 «(LW
d
2sT4

s )1 SW
d
(12a) , (2)

where TS is the LST, SWd is the downward shortwave

radiative flux, LWd is the downward longwave radia-

tive flux, Rnet is the net radiative flux, a is the surface

albedo, « is the broadband surface emissivity, and s

is the Stefan–Boltzmann constant; Rnet is balanced by

the sensible, latent, and ground heat fluxes. Therefore,

the accuracy of LSTs fromNCEPGFS analyses depends

on the accuracy of the three heat fluxes and two radia-

tive fluxes.

In this section the LSTs fromNCEPGFS analyses are

compared with direct ground-based observations of

LSTs at the NBMO stations. Figure 5 shows the mean

differences between NCEP GFS analyses and ground-

based observations averaged within 28 3 28 grid boxes.

The NCEPGFS LSTs have a significant cold bias during

the day (Fig. 5b). The magnitude of the cold bias is

;4 K in eastern China and;9 K in southwestern China.

During nighttime the NCEP GFS LSTs show a warm

bias in western China and a small cold bias in eastern

China (Fig. 5d). A large cold LST bias is found near the

southeastern edge of the Tibetan Plateau. The reasons

why LSTs have such large uncertainties during the day

(Fig. 5b) and night (Fig. 5d) are complicated.

First, the downward solar shortwave radiation used by

the NCEPGFS model could have a negative bias during

the daytime (Wang et al. 2014). If so, the first term on the

right-hand side of Eq. (2) could be overestimated, re-

sulting in a cold bias of NCEP GFS LSTs during the

daytime.

Second, the LST difference may be affected by the

horizontal resolutions of the model grids. A coarse grid

configuration will smooth the steep terrain and in-

troduce biases. Figure 6 shows the mean differences in

terrain height between 0.258 and 1-arc-min topography

resolutions (0.258 topography minus 1-arc-min topog-

raphy). The 0.258 topography represents the terrain

background used for the NCEP GFS analyses, while the

1-arc-min (;1 km) topography represents the actual

terrain height. The absolute differences of the grid

terrain heights at two separate resolutions can be as

large as 900 m. Given a constant lapse rate of 7Kkm21,

the temperature difference associated with a terrain

height error of 900m would be greater than 6K. The

biases and standard deviations of LST differences

between ground-based observations and NCEP GFS

FIG. 6. Mean differences in terrain height (m) between 0.258 and 1-arc-min topography resolutions (a) for a 5-km

Lambert grid and (b) interpolated at surface stations and then averaged to 28 3 28 grid boxes.
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analyses interpolated to surface stations (analyses minus

observations) are calculated at two different resolutions

(Table 2). The magnitudes (i.e., the absolute values) of

biases and standard deviations of LST differences in-

crease as the height difference increases. When terrain

height differences are less than 200 m, the LST differ-

ences during the nighttime are small; that is, the absolute

values of the bias and the standard deviation are less

than 1.0 and 4 K, respectively.

Third, there could also be deficiencies in the compu-

tation of sensible and ground heat fluxes over arid re-

gions (Zheng et al. 2012; Trigo et al. 2015). The warm

bias over sandy land could be caused by an underesti-

mate of surface thermal conductivity, which is a key

parameter in the computation of ground heat fluxes

(Zeng et al. 2012). This explanation is verified by Table 3,

where positive LST differences between ground-based

observations and NCEP GFS analyses (analyses minus

observations) are found over nonvegetated surfaces,

including sandy land, gobi, salina, bare soil, and bare

rock. A revised surface thermal conductivity may im-

prove LST forecasts over nonvegetated regions.

Finally, it is worth mentioning that the LST has a large

spatial variability that could lead to inconsistencies be-

tween model simulations and observations from surface

stations. The LSTs from ground-based observations

represent point measurements at the station location,

while the LSTs from ECMWF analyses are averages in

0.258 3 0.258 grid boxes.

5. Impacts of infrared LSE on radiance simulations

Impacts of the infrared LSE on simulations of the five

surface-sensitive AHI channels over different surface

types are assessed based on the biases and standard

deviations of brightness temperature between AHI

observations (O) minus background simulations (B;

OMBs). The radiance simulations are generated by the

CRTMv2.2.3 with the three infrared LSE datasets pre-

viously discussed. To avoid having the bias in model-

forecasted LST affect CRTM simulations, NBMO

station-based LST observations are used instead of the

NCEPGFS LST analyses as inputs to the CRTM. Using

in situ point observations introduces an error in the

representativeness between station observations and

AHI infrared data. AHI data are aggregated to a

kilometer-level grid center (2 km at nadir and;4 km for

China). The LST is expected to vary spatially, even in re-

gions of apparent surface homogeneity. This represen-

tativeness issue is more significant during the daytime.

Therefore, in this study daytime data are rejected, that is,

data with solar zenith angles less than 908. Furthermore,

TABLE 3. Biases (m) and standard deviations (s) of LST differences between ground-based observations and NCEP GFS analyses

interpolated at surface stations (analyses minus observations) for different surface types. The sample size (count) is also given.

Surface type Cropland Forest Grassland Water body Urban Sandy land Gobi Salina Bare soil Bare rock

Day

m 24.16 25.60 26.29 24.65 23.26 25.02 25.16 23.16 26.59 26.93

s 4.75 4.44 4.88 4.69 5.11 4.47 4.20 4.53 4.11 4.20

Count 91 355 32 863 17 734 500 84 1863 2171 289 7 994

Night

m 20.05 22.40 0.45 20.23 20.21 3.53 1.82 2.17 6.49 0.16

s 3.63 3.49 4.78 4.65 2.29 4.00 4.21 3.13 2.58 4.57

Count 133 555 45 273 37 944 740 79 3365 3745 464 9 1882

TABLE 2. Biases (m) and standard deviations (s) of LST differences between ground-based observations and NCEP GFS analyses

interpolated at surface stations (analyses minus observations) when the differences in surface station terrain heights at two different

resolutions [e.g., 0.258 topography minus 1-arc-min topography (Topo_Diff)] vary from less than 2200 m to more than 500 m at 100-m

intervals. The sample size (count) is also given.

Topo_Diff (m) ,2200 2200 to 2100 2100 to 0 0 to 100 100 to 200 200 to 300 300 to 400 400 to 500 .500

Day

m 24.21 24.92 24.00 24.36 25.30 26.36 26.78 27.53 27.65

s 5.27 4.82 4.71 4.64 4.66 4.45 4.53 4.40 4.81

Count 747 1792 35 638 66 021 22 084 10 728 4661 2695 4690

Night

m 20.83 0.26 0.42 0.02 20.62 21.45 21.94 21.75 23.10

s 3.98 3.93 3.70 3.89 3.96 3.91 4.16 4.64 4.74

Count 1385 2889 53 408 97 309 33 515 17 036 7972 5316 10 078
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data contaminated by clouds are excluded based on the

AHI cloudmask described in section 2b. Finally, more than

220000 data samples over 144 days are collected in the 2-yr

period from July 2015 to June 2017. We have included data

in different months to ideally include multiple seasons

because for some areas, the clear-sky occurrence was

predominant only for particular seasons. Figure 5c

presents the spatial distributions of data counts within

28 3 28 grid boxes during the 144-day period. The sample

size is small over the Tibetan Plateau, where NBMO

stations are sparsely distributed. Northeastern China

also has fewer samples because of cloud contamination.

FIG. 7. Spatial distributions of brightness temperature OMB biases (K) for the (left) 3.9- and (right) 8.6-mmAHI

channels within 28 3 28 grid boxes with model simulations generated using the LSE from the (top) IGBP dataset,

(middle) UW_HSRemis, and (bottom) CAMEL_HSRemis.
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Figure 7 shows the spatial distributions of AHI 3.9-

and 8.6-mmOMB biases estimated using LSEs from the

IGBP dataset, UW_HSRemis, and CAMEL_HSRemis

as inputs to the CRTM. For both channels, the OMB

biases are within the range of 63 K for most of China,

with larger differences predominant in areas with small

sample sizes. A negative bias of less than 23 K for the

AHI 8.6-mm channel is found in Xinjiang (;858E, 408N)

and Inner Mongolia (;1058E, 408N) for the IGBP LSE

dataset (Fig. 7b). The biases at 8.6 mm are smaller,

typically less than 62 K, in the same area when the

UW_HSRemis (Fig. 7d) and CAMEL_HSRemis

(Fig. 7f) LSE datasets are used for model simulations.

This is because the IGBP LSE at 8.6 mm is higher than

that from both UW_HSRemis and CAMEL_HSRemis

in northwestern China.

To show more clearly the differences in CRTM sim-

ulations of brightness temperature with different LSE

datasets, Fig. 8 presents the spatial distributions of the

mean differences in brightness temperature simulations

for AHI channels at 3.9 and 8.6mm between IGBP

and CAMEL_HSRemis (Figs. 8a,b), and between

UW_HSRemis and CAMEL_HSRemis (Figs. 8c,d). For

the 3.9-mm channel, the differences between IGBP and

CAMEL_HSRemis simulations can be as large as 1.5 K

(Fig. 8a). Large positive differences are found over

nonvegetated areas, while negative differences are found

over eastern China. The differences in brightness tem-

perature at 3.9 mm between the UW_HSRemis and

CAMEL_HSRemis simulations are less than 0.25K ex-

cept for a few points (Fig. 8c). At 8.6 mm, the differences

among the three simulations with different LSE datasets

are small in eastern China and significantly large over

nonvegetated surfaces. The differences between

IGBP and CAMEL_HSRemis simulations (Fig. 8b)

are typically larger than those between UW_HSRemis

and CAMEL_HSRemis simulations (Fig. 8d), with the

largest differences in nonvegetated regions.

The biases and standard deviations of OMBs esti-

mated with different LSE datasets averaged over the

FIG. 8. Spatial distributions of the mean differences in brightness temperature simulations (K) for the (left)

3.9- and (right) 8.6-mm AHI channels (top) between IGBP and CAMEL_HSRemis, and (bottom) between

UW_HSRemis and CAMEL_HSRemis.
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entire domain are provided in Fig. 9. The OMB biases

are consistently negative. The simulations with the

IGBP LSE dataset result in larger OMB biases (;1.6 K)

for the 8.6-mm channel but smaller biases at the four

other AHI channels, compared to those from the

UW_HSRemis and CAMEL_HSRemis LSE datasets.

The OMBs from the CAMEL_HSRemis LSE dataset

have smaller negative biases for the 3.9- and 8.6-mm

channels and larger negative biases for the 10.4-, 11.2-,

and 12.4-mm channels, compared to those from

UW_HSRemis. Note that the simulation biases include

not only emissivity estimation errors but also brightness

temperature and LST observation errors from AHI and

NBMO stations, as well as systematic errors in the

CRTM and NECP GFS analyses. Considering that the

AHI observation error is ;0.3 K, as shown in Table 1,

the differences in the biases of OMBs estimated with the

UW_HSRemis and CAMEL_HSRemis LSE datasets

are not significant at the five AHI surface-sensitive

channels. The standard deviations of OMBs estimated

with the three LSE datasets are largely consistent for all

five surface-sensitive channels.

Figure 10 shows biases and standard deviations of

brightness temperature OMBs for different surface

types. Note that the results for the water body, urban,

salina, and bare soil surface types are not included in

Fig. 10 because of their small sample sizes (Table 3). The

differences in OMB statistics estimated with the three

LSE datasets are on average less than 0.3 K for cropland

and forest types for all the AHI surface-sensitive

channels, suggesting that the difference among the three

datasets are not significant. Large differences (;0.8 K)

occur for the grassland surface type at the 11.2- and

12.4-mm channels when comparing OMB results from

the IGBP dataset to those from the UW_HSRemis and

CAMEL_HSRemis datasets. Over the nonvegetated

regions (i.e., sandy land, gobi, and bare rock), significant

improvements occur at the 3.9- and 8.6-mm channels

when the CAMEL_HSRemis dataset is used instead

of the IGBP dataset. The improvements in bright-

ness temperature simulations can be as large as 1.6 K

at 8.6 mm for all three nonvegetated regions. There are

no significant differences in OMBs among the three

LSE datasets for the vegetated and nonvegetated

surface types.

The seasonal dependence of OMB statistics is illus-

trated in Fig. 11 for the five AHI surface-sensitive

channels over nonvegetated surface types. The differ-

ences between the IGBP simulations and those of the

two other LSE datasets are the smallest in summer

[June–August (JJA)]. By contrast, the differences are

as large as 0.6 and 1.6 K at the 3.9- and 8.6-mm chan-

nels, respectively, in the other seasons [March–May

(MAM); September–November (SON); December–

February (DJF)]. This suggests a poorer performance

of IGBP simulations because of a lack of LSE monthly

variations.

6. Summary and conclusions

The accuracy of radiance simulations of satellite in-

frared surface-sensitive channels over land is greatly

dependent on the specification of the LSE and LST.

In this study two infrared LSE datasets—namely,

UW_HSRemis and CAMEL_HSRemis—are incorpo-

rated into the CRTM and compared with the IGBP LSE

dataset already embedded in the CRTM. The other key

component—the LST—was improved by using NBMO

station data to better capture the spatial heterogeneity

for the multitude of surface conditions over China.

The UW_HSRemis and CAMEL_HSRemis LSEs

have monthly variations, while the LSE in the IGBP

dataset is fixed in time and varies with land classification.

The IGBP LSE values are higher than those from the

other two LSE datasets at the 8.6-mm wavelength.

The 3.9-mm IGBP LSE is lower and higher than both

the UW_HSRemis and CAMEL_HSRemis LSEs over

FIG. 9. (top) Biases and (bottom) standard deviations (Std) of

brightness temperature OMBs for the five surface-sensitive AHI

channels over the entire domain using the IGBP database (blue),

UW_HSRemis (cyan), and CAMEL_HSRemis (red).
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vegetated and nonvegetated surface types, respectively.

The differences in LSE between UW_HSRemis

and CAMEL_HSRemis are generally small with

UW_HSRemis LSE values slightly larger at 3.9 and

8.6mm and smaller within the 10.4–12.4-mm wavelength

range than CAMEL_HSRemis LSE values.

These differences in LSEs affected the radiance sim-

ulations of AHI surface-sensitive channels. The simu-

lation accuracies with the three LSE datasets are

compared by examining fits to AHI observations for

nighttime scenes over China using the CRTM with

background fields from NCEP GFS analyses and LST

observations from the NBMO stations in China. Con-

sidering the brightness temperature and LST observa-

tion errors from AHI and NBMO stations, and

systematic errors in the CRTM and NECP GFS ana-

lyses, the differences in simulation biases with the three

LSE datasets are not significant over cropland and

forest surface types. For the grassland surface type, the

CRTM simulations with the IGBP dataset have the

smallest bias at 10.4, 11.2, and 12.4 mm compared with

biases from simulations using the other two LSE da-

tasets. For nonvegetated surface types, such as sandy

land, gobi, and bare rock, the CRTM simulations with

the IGBP dataset are poorer than those using the

UW_HSRemis and CAMEL_HSRemis datasets at 3.9

and 8.6mm.The standard deviations of simulation biases

are comparable between the three LSE datasets. When

examining the seasonal variation of simulation biases,

differences between simulation biases from the IGBP

FIG. 10. (top) Biases (K) and (bottom) standard deviations (K) of brightness temperature OMBs for surface-sensitive AHI channels

over different surface types with the (left) IGBP dataset, (center) UW_HSRemis, and (right) CAMEL_HSRemis. Note that statistical

results for the water body, urban, salina, and bare soil surface types are not included because of too few data samples.
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dataset and those from the other two datasets are

smallest in summer and more significant in the other

three seasons. Thus, improvements in simulating AHI

infrared surface-sensitive channels can be made when

using spatially and temporally varying LSE estimates. In

fact, the infrared LSE varies greatly with respect to

surface material, soil moisture content, and vegetation-

cover characteristics (van de Griend and Owe 1993). A

more accurate LSE dataset could be retrieved from

satellite observations or simulated in land surface

models by considering the effects of vegetation and soil

parameters.

In the past two decades, satellite measurements of

infrared water vapor sounding channels have been

assimilated in NWP models over both land and ocean,

but those of infrared surface-sensitive channels are as-

similated only over oceans (Köpken et al. 2004; Zou

et al. 2011, 2015). The latter is mainly due to the

large uncertainties of model simulations over land. This

study therefore contributes to assimilations of AHI

surface-sensitive channels in NWP models over land or

AHI environmental data record products involving

model simulations. Obtaining accurate radiance simula-

tions is only the first step toward the assimilation of AHI

surface-sensitive channels over land. Cloud detection,

bias correction, and quality control are other compo-

nents that are also important for the successful assimi-

lation of AHI surface-sensitive channels over land.

These areas will be investigated in several follow-on

studies. It is hoped that in the near future, AHI surface-

sensitive channels over land will finally contribute to an

improved NWP forecast skill through AHI data as-

similation as was done over oceans (Qin et al. 2017).
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